Saturday, 4 June 2011

8th Factorization


1. Factorization
(1)   (a + b ) (1 – c ) – (b + c ) ( 1 – c )  (2)  1 6 a2   +  40 a b  + 25 b2         
(3)  4x2/9  - 2/3 x y +  y2 /4
(4)    5x2yz   -    5 x3y                            (5)   18 q2 + 338 p2 -  1 5 6 p q         
(6)  -108 x2 -  363 y2 + 369 x y   
2.  Factorize  
(1)  16- 4x2                                          (2)   20 x3 – 45 b4x                             
(3)     4a2 9 b2   c2  -  6bc
4)  25 ( x + 2y )2  - 36 (2x-5y)2           (5)   a2 +  2 a b + b2 – c2 -2cd –d2
3. Factorize using a2+b2+c2 +2ab+2bc+2ca
(1)  x2 + y2 + 25 z2 – 2 x y – 10 y z + 10 z x             (2)  9x2  +  4y2 + 49z2 12 x y  +  28 y z – 42  z x 
(3)   4x6 + 9y6 + 16 x 6 + 12 x3 y3 + 16 x3 z3 + 24 y3z3            (4)  a8 + 256 b8 + 96 a4b4-16a3b2 – 256a2b6
4. Factorize (x + a) (x + b) = x2 + (a + b) x +a b
(1) x2+7x+ 10              (2) x2+x-20                  (3) x2-4x-21     (4) 15x2 + 13x + 2       (5) -6x2 - 13x+5
5. Factorize
(1) 125 a3 + 150 a2b + 60 ab3 + 8ab3             (2)  x6 – 12 x4 b4 c + 6a2b5c2 + b6c3  (3) 81a3 + 24b3          
(4) 64a3b2 – 125 b5                             (5)  16 a3 – 54 b3                                 (6)  8X + 1      
(7) –a3  - 27b3                                      (8) 729a6 - 1    (9) 8m3 + 64                (10) 1000 – 343 a9
6. Find the following products:
(1)  (9m + 2m  )( 81m2 -18mn + 4n2) (2) (5 - 2x ) (25 +10x + 4x2)      (3) (3 + 5/x ) ( 9 – 15/x + 25/x2)

7. Find the value of  27x2 + 64y2 + 36xy(3x + 4y) , when x = 5 and y = -3.
8. Using the identity (x + a) (x + b) = x2  + (a + b)x + a b, evaluate  98 ´ 97
9.  x + y + z = 0, prove that x 3+ y3 + z3 = 3xyz.
10. Factorize   
(1)  m4 256                           (2) y2 –7y +12                         (3) 6xy – 4y + 6 – 9x
(4)  x4 – (y + z)4                             (5) a4 – 2a²b² + b4                            (6) (l + m) ² – 4lm
(7) (x² – 2xy + y²) – z²                        (8) 25a² – 4b² + 28bc – 49c²    (9) 5y² – 20y – 8z + 2yz
(10) a8 b8

2 comments: